Show simple item record

dc.contributor.advisorNababan, Erna Budhiarti
dc.contributor.advisorJaya, Ivan
dc.contributor.authorRiskiani, Tria
dc.date.accessioned2024-08-30T06:39:59Z
dc.date.available2024-08-30T06:39:59Z
dc.date.issued2024
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/96432
dc.description.abstractFingerprint is one of the biometric forms used for identifying a person. Fingerprint has unique ridge arrangement on each human finger and do not change with age. The ridges on fingerprint create distinct and different patterns. The Henry system is a fingerprint identification system that utilizes the patterns on the surface of a finger to verify a person's identity. As a classification method, Henry's classification system is the most widely used for fingerprint classification. There are five types of fingerprint patterns: Arch, Left Loop, Right Loop, Tented Arch, and Whrol. Fingerprint classification is an important part of individual identification system. However, identifying fingerprint manually is difficult to do because the pattern is complicated and this is depends on individual capabilities and also inefficient in terms of time. This research aims to classify fingerprint patterns using a Convolutional Neural Network. The Convolutional Neural Network method is used in this research because it has shown the most significant results in image recognition. The image processing techniques applied in this research include contrast enhancement and thresholding. After testing the data, this method is capable to classify fingerprint images into five fingerprint patterns with 85% accuracy from test dataset containing 75 fingerprint images.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectFingerprinten_US
dc.subjectBiometricen_US
dc.subjectHenry Systemen_US
dc.subjectArchen_US
dc.subjectLeft Loopen_US
dc.subjectRight Loopen_US
dc.subjectTented Archen_US
dc.subjectWhrolen_US
dc.subjectContrast Enhancementen_US
dc.subjectThresholdingen_US
dc.subjectConvolutional Neural Networken_US
dc.subjectSDGsen_US
dc.titleKlasifikasi Citra Sidik Jari Menggunakan Convolutional Neural Network Berdasarkan Tipe Pattern pada Sistem Henryen_US
dc.title.alternativeFingerprint Image Classification Using Convolutional Neural Network Based on Pattern Typei in Henry Systemen_US
dc.typeThesisen_US
dc.identifier.nimNIM171402016
dc.identifier.nidnNIDN0026106209
dc.identifier.nidnNIDN0107078404
dc.identifier.kodeprodiKODEPRODI59201#Teknologi Informasi
dc.description.pages83 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record