Show simple item record

dc.contributor.advisorHarumy, T Henny Febriana
dc.contributor.advisorEfendi, Syahril
dc.contributor.authorPrayogo, Farrel Dwi
dc.date.accessioned2024-09-05T05:26:12Z
dc.date.available2024-09-05T05:26:12Z
dc.date.issued2024
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/96768
dc.description.abstractCoastal waste is a serious environmental problem in Indonesia, including at Olo Beach Medan. Inefficient coastal waste management can lead to marine pollution, ecosystem damage, and public health problems. Therefore, an effective method for identifying and classifying coastal waste is needed. This study proposes a hybrid neural network innovation using the Single Shot Multibox Detector (SSD) and ResNet-18 algorithms for coastal waste identification and classification. The SSD algorithm is used to detect the location of coastal waste in images, while ResNet-18 is used to classify the type of coastal waste. This hybrid model is trained using a dataset of coastal waste images from Olo Beach Medan. The results show that the hybrid SSD and ResNet-18 model has high accuracy in identifying and classifying coastal waste. Detection accuracy reaches 95%, while classification accuracy reaches 90%. The model can detect and classify various types of coastal waste, such as plastic waste, organic waste, and wood waste. The hybrid neural network innovation using the SSD and ResNet-18 algorithms has the potential to be an effective method for coastal waste identification and classification. This model can be used to assist in more optimal coastal waste management at Olo Beach Medan and other coastal areas.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectCoastal Wasteen_US
dc.subjectDeep Learningen_US
dc.subjectConvolutional Neural Network (CNN)en_US
dc.subjectIdentificationen_US
dc.subjectClassificationen_US
dc.subjectSingle Shot Multibox Detector (SSD)en_US
dc.subjectResNet-18en_US
dc.subjectOlo Beach Medanen_US
dc.subjectSDGsen_US
dc.titleInovasi Hybrid Neural Network Algoritma Single Shot Multibox Detector (SSD) dan ResNet -18 Identifikasi dan Klasifikasi Sampah Pesisir (Studi Kasus Pantai Olo Medan)en_US
dc.title.alternativeInnovation of Hybrid Neural Network Algorithm: Single Shot Multibox Detector (SSD) and ResNet-18 for Coastal Waste Identification and Classification (Case Study: Olo Beach, Medan)en_US
dc.typeThesisen_US
dc.identifier.nimNIM201401119
dc.identifier.nidnNIDN0119028802
dc.identifier.nidnNIDN0010116706
dc.identifier.kodeprodiKODEPRODI55201#Ilmu Komputer
dc.description.pages84 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record