Show simple item record

dc.contributor.advisorSitompul, Opim Salim
dc.contributor.advisorAmalia
dc.contributor.authorSenda, Tito Afwi
dc.date.accessioned2024-09-06T09:21:32Z
dc.date.available2024-09-06T09:21:32Z
dc.date.issued2024
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/96947
dc.description.abstractThis research discusses sentiment classification using the K-Nearest Neighbor (K-NN) algorithm with the RANDOM SEARCH CROSS VALIDATION (RSCV) approach. This method aims to classify ChatGPT app user reviews into three categories: positive, negative, and neutral. In this study, review data is collected from the Play Store and text preprocessing is performed. Furthermore, the K-NN model will use RSCV in determining parameter values. The evaluation results show that the K-NN model with the best parameters can classify the sentiment of reviews with good accuracy.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectSentiment classificationen_US
dc.subjectChatGPTen_US
dc.subjectK-NNen_US
dc.subjectNatural Language Processing (NLP)en_US
dc.subjectRANDOM SEARCH CROSS VALIDATION (RSCV)en_US
dc.subjectSDGsen_US
dc.titleKlasifikasi Sentimen Menggunakan Algoritma K-NN Berdasarkan Pendekatan Random Search Cross Validationen_US
dc.title.alternativeSentiment Classification Using K-NN Algorithm Based on Random Search Cross Validation Approachen_US
dc.typeThesisen_US
dc.identifier.nimNIM217038016
dc.identifier.nidnNIDN0017086108
dc.identifier.nidnNIDN0121127801
dc.identifier.kodeprodiKODEPRODI55101#Teknik Informatika
dc.description.pages82 Pagesen_US
dc.description.typeTesis Magisteren_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record