Show simple item record

dc.contributor.advisorSuherman
dc.contributor.authorMalau, Gilbert O K D
dc.date.accessioned2024-09-10T07:30:36Z
dc.date.available2024-09-10T07:30:36Z
dc.date.issued2024
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/97054
dc.description.abstractThis research evaluates the performance of the YOLO V5 model which uses the EfficientNet architecture in predicting solar cell output power based on image data. The research results show that this model achieves an average accuracy of 86.4%. Accuracy for each power class is 90% for the Low Power class, 84.7% for the Medium Power class, and 84% for the High Power class. From a total of 35 test image data, the model succeeded in correctly predicting 33 images, while 2 images were not predicted well. The YOLO V5 model with EfficientNetv2 architecture shows good capabilities in detection and prediction based on power classification. These results indicate that the model has significant potential in solar cell output power prediction applications, although there is still room for improvement in accuracy, especially for various power classesen_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectPrediction of Output Yield Power Solar Cellen_US
dc.subjectYOLO V5en_US
dc.subjectGramian Angular Field (GAF)en_US
dc.subjectSDGsen_US
dc.titlePrediksi Daya Hasil Keluaran Solar Cell Menggunakan Yolo V5 dengan Arsitektur Efficientneten_US
dc.title.alternativeOutput Power Prediction of Solar Cell Using Yolo V5 with Efficientnet Architectureen_US
dc.typeThesisen_US
dc.identifier.nimNIM200402014
dc.identifier.nidnNIDN0002027802
dc.identifier.kodeprodiKODEPRODI20201#Teknik Elektro
dc.description.pages68 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record