Show simple item record

dc.contributor.advisorSutarman
dc.contributor.authorNasution, Muhammat Rayyan
dc.date.accessioned2024-09-12T04:37:28Z
dc.date.available2024-09-12T04:37:28Z
dc.date.issued2024
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/97219
dc.description.abstractRegularization on high-dimensional data is performed to determine whether regularization can address the effects of multicollinearity that arise when conducting multiple linear regression on high-dimensional data. High-dimensional data is known for its susceptibility to multicollinearity due to the characteristic where the number of observed variables exceeds the number of observations (p ≫ n). Ridge regularization and the Least Absolute Shrinkage and Selection Operator (LASSO) are used with the evaluation metric Mean Squared Error (MSE). The analysis of the designed synthetic data revealed that LASSO regularized regression tends to provide better performance compared to conventional linear regression and Ridge regularized regression, based on the minimal MSE value. This MSE value indicates that LASSO regularized regression offers the best performance in mitigating the effects of multicollinearity in high-dimensional data.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectHigh-Dimensional Dataen_US
dc.subjectLASSOen_US
dc.subjectMulticolinearityen_US
dc.subjectMultiple Linier Regressionen_US
dc.subjectRegularizationen_US
dc.subjectRidgeen_US
dc.subjectSDGsen_US
dc.titleRegularisasi Regresi Linier Berganda pada Data Berdimensi Tinggi Untuk Mengatasi Efek Multikolinearitasen_US
dc.title.alternativeRegularization of Multiple Linier Regression on High-Dimensional Data to Overcome Multicolinearity Effectsen_US
dc.typeThesisen_US
dc.identifier.nimNIM200803083
dc.identifier.nidnNIDN0026106305
dc.identifier.kodeprodiKODEPRODI44201#Matematika
dc.description.pages52 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record