Show simple item record

dc.contributor.advisorNazaruddin
dc.contributor.advisorSembiring, Beby Karina Fawzeea
dc.contributor.authorSiahaan, Febry Claudia Nabasa
dc.date.accessioned2024-09-26T07:17:44Z
dc.date.available2024-09-26T07:17:44Z
dc.date.issued2024
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/97703
dc.description.abstractPLN Mobile application is launched to enhance user satisfaction with the services provided. The application usage has increased since the Covid-19 pandemic and continues to be widely used. To assess the quality of the PLN Mobile Application, a sentiment analysis is conducted to enhance PLN Mobile service quality. The Naïve Bayes algorithm and RapidMiner Software are used for this purpose. The process begins with data crawling, followed by various tasks such as cleaning, tokenization, transformation, cases, and stopwords removal. Subsequently, the data is filtered. The Naïve Bayes model is then done and tested to get the value of accuracy. A total of 1068 data are processed, divided into 320 data training and 748 data testing. The accuracy of the Naïve Bayes model achieves 70.28%.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectSentiment Analysisen_US
dc.subjectPLN Mobileen_US
dc.subjectNaïve Bayesen_US
dc.subjectSDGsen_US
dc.titleAnalisis Sentimen pada Opini Pengguna Aplikasi PLN Mobile untuk Meningkatkan Kualitas Layanan PLN Mobileen_US
dc.title.alternativeSentiment Analysis of PLN Mobile Application User Opinions to Enhance PLN Mobile Service Qualityen_US
dc.typeThesisen_US
dc.identifier.nimNIM217007027
dc.identifier.nidnNIDN0001086008
dc.identifier.nidnNIDN0012107402
dc.identifier.kodeprodiKODEPRODI61102#Magister Manajemen
dc.description.pages61 Pagesen_US
dc.description.typeTesis Magisteren_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record